C/C++关键字typedef使用指南

搞懂了c++创始人写的中的下面这个例子, 有助于你理解typdef:

typedef int P();
typedef int Q();
class X {
static P(Q); // 等价于`static int Q()`, Q在此作用域中不再是一个类型
static Q(P); // 等价于`static int Q(int ())`, 定义了一个名为Q的function
};

这是一个极好的例子, 先问一下 typedef int P()到底做了什么 ? 其实是 :

declares a function type P as returning an int and taking no arguments.

1. 官方定义

初次接触此类typedef用法的程序员直观上理解这个例子比较困难, 我们来看一下typedef的官方定义 :

Typedef does not work like typedef [type] [new name].The[new name] part does not always come at the end.

You should look at it this way : if[some declaration] declares a variable, typedef [same declaration] would define a type.

总结一下就是 : 任何声明变量的语句前面加上typedef之后,原来是变量的都变成一种类型。不管这个声明中的标识符号出现在中间还是最后。

2. 隐藏技能
typedef 定义的新类型, 使用时可以省略括号。什么意思 ?

typedef int NUM;
NUM a = 10; // 也可写成`NUM(a) = 10;
NUM(b) = 12; // 也可写成`NUM b = 12;

3. 例子(先从初级的开始 :)

int整型

typedef int x; // 定义了一个名为x的int类型

自定义结构体

typedef struct { char c; } s; // 定义名为s的struct类型

指针

typedef int *p; //定义了一个名为p的指针类型, 它指向int

高级的(注意标识符不一定在最后) :

数组

typedef int A[]; // 定义一个名为A的int数组的类型

函数

typedef int f(); // 定义一个名为f, 参数为空, 返回值为int的函数类型

typedef int g(int); // 定义一个名为g, 含一个int参数, 返回值为int行的函数类型

现在回过头看:

typedef int P();
static P(Q);

应该就比较好理解了, P是一个新定义的function类型, 它返回值为int, 无参数
根据我的第2点说明, P(Q); 实际上等价于P Q, 声明Q是一个返回值为int, 无参数的函数.

这玩意有什么用呢 ?
我们都知道C++语言里, 函数都是先声明后使用的(除非在使用之前定义), 看以下例子 :

#include <iostream>
#include <stdio.h>
#include <string>

typedef int P(); // 简单的
typedef void Q(int *p, const std::string& s1, const std::string& s2, size_t size, bool is_true); // 复杂的
class X {
public:
P(eat_shit); // 等价于声明`int eat_shit();`
Q(bullshit); // 等价于声明`void bullshit(int *p, const string& s1, const string& s2, size_t size, bool is_true);`
};

int main() {
X *xx;
printf(“shit ret: %d\n”, xx->eat_shit());
int a[] = { 1, 3, 4, 5, 7 };
xx->bullshit(a, “foo”, “bar”, sizeof(a) / sizeof(int), true);
}

int X::eat_shit() {
return 888;
}

void X::bullshit(int *p, const std::string& s1, const std::string& s2, size_t size, bool is_true) {
std::cout << “s1: ” << s1 << “, s2: ” << s2 << “, size: ” << size << std::endl;
printf(“elems:\n”);
for (int i = 0; i < size; i++) {
printf(“%d %s”, *p++, (i == size – 1) ? “” : “,”);
}
printf(“\n”);
}

理解了上面的再看下面这段,理解复杂的定义和声明:

在阅读Linux的内核代码是经常会遇到一些复杂的声明和定义,例如:

  1.  void * (*(*fp1) (int))[10];
  2. float(*(*fp2) (int, int, float)) (int);
  3. typedef double(*(*(*fp3) ())[10]) ();
    1. fp3 a;
  4. int(*(*fp4())[10]) ();

 

刚看到这些声明或者定义时,初学者可能头皮发毛,基于大惑不解。如果缺乏经验和方法来对这些内容进行理解,势必会让我们浪费大量的时间。

我尝试对这些内容进行疏理和总结,为自己和有同样困惑的同学答疑解惑。要理解这些复杂的声明和定义,我觉得首先不能着急,应该由浅而深,逐步突破。下面先看一些简单的定义:

1. 定义一个整型数

int a;

2. 定义一个指向整型数的指针

int *p;

3. 定义一个指向指针的指针,它指向的指针指向一个整型数

int **pp;

我们可以用一些简单的代码把这三条给串起来:

int a;
int *p;
int **pp;

p = &a; // p指向整数a所在的地址
pp = &p; // pp指向指针p

 

4. 定义一个包含10个整型数的数组

int arr[10];

5. 定义一个指向包含10个整型数数组的指针

int(*pArr)[10];

用几行代码将4、5两个定义串起来:

int arr[10];
int(*pArr)[10];

pArr = &arr;

6. 定义一个指向函数的指针,被指向的函数有一个整型参数并返回整型值

int(*pfunc) (int);

7. 定义一个包含10个指针的数组,其中包含的指针指向函数,这些函数有一个整型参数并返回整型值

int(*arr[10]) (int);

用几行代码将6、7两个定义串起来:

int(*pfunc) (int);
int(*arr[10]) (int);

arr[0] = pfunc;

到这一步,似乎就不是那么好理解了。现在需要请出用于理解复杂定义的“右左法则”:

从变量名看起,先往右,再往左,碰到圆括号就调转阅读的方向;括号内分析完就跳出括号,还是先右后左的顺序。如此循环,直到分析完整个定义。

让我们用这个方法来分析上面的第6条定义:int(*pfunc) (int);

  • 找到变量名pfunc,先往右是圆括号,调转方向,左边是一个*号,这说明pfunc是一个指针;
  • 然后跳出这个圆括号,先看右边,又遇到圆括号,这说明(*pfunc)是一个函数,所以pfunc是一个指向这类函数的指针,即函数指针,这类函数具有一个int类型的参数,返回值类型是int。

接着分析第7条定义:int(*arr[10]) (int);

  • 找到变量名arr,先往右是[]运算符,说明arr是一个数组;
  • 再往左是一个*号,说明arr数组的元素是指针(注意:这里的*修饰的不是arr,而是arr[10]。原因是[]运算符的优先级比*要高,arr先与[]结合。);
  • 跳出圆括号,先往右又遇到圆括号,说明arr数组的元素是指向函数的指针,它指向的函数有一个int类型的参数,返回值类型是int。

分析完这两个定义,相信多数人心里面应该有点谱了。

可应该还有人会问:怎么判断定义的是函数指针(定义6),还是数组指针(定义5),或是数组(定义7)?可以抽象出几个模式:

  • type(*var)(…); // 变量名var与*结合,被圆括号括起来,右边是参数列表。表明这是函数指针
  • type(*var)[]; //变量名var与*结合,被圆括号括起来,右边是[]运算符。表示这是数组指针
  • type(*var[])…; // 变量名var先与[]结合,说明这是一个数组(至于数组包含的是什么,由旁边的修饰决定)

至此,我们应该有能力分析文章开始列出来了几条声明和定义:

(1) void * (*(*fp1) (int))[10];

  • 找到变量名fp1,往右看是圆括号,调转方向往左看到*号,说明fp1是一个指针;
  • 跳出内层圆括号,往右看是参数列表,说明fp1是一个函数指针,接着往左看是*号,说明指向的函数返回值是指针;
  • 再跳出外层圆括号,往右看是[]运算符,说明函数返回的是一个数组指针,往左看是void *,说明数组包含的类型是void *。

简言之,fp1是一个指向函数的指针,该函数接受一个整型参数并返回一个指向含有10个void指针数组的指针。

(2) float(*(*fp2) (int, int, float)) (int);

  • 找到变量名fp2,往右看是圆括号,调转方向往左看到*号,说明fp2是一个指针;
  • 跳出内层圆括号,往右看是参数列表,说明fp2是一个函数指针,接着往左看是*号,说明指向的函数返回值是指针;
  • 再跳出外层圆括号,往右看还是参数列表,说明返回的指针是一个函数指针,该函数有一个int类型的参数,返回值类型是float。

简言之,fp2是一个指向函数的指针,该函数接受三个参数(int, int和float),且返回一个指向函数的指针,该函数接受一个整型参数并返回一个float。

(3) typedef double(*(*(*fp3) ())[10]) ();

fp3 a;

  • 如果创建许多复杂的定义,可以使用typedef。这一条显示typedef是如何缩短复杂的定义的。
  • 跟前面一样,先找到变量名fp3(这里fp3其实是新类型名),往右看是圆括号,调转方向往左是*,说明fp3是一个指针;
  • 跳出圆括号,往右看是空参数列表,说明fp3是一个函数指针,接着往左是*号,说明该函数的返回值是一个指针;
  • 跳出第二层圆括号,往右是[]运算符,说明函数的返回值是一个数组指针,接着往左是*号,说明数组中包含的是指针;
  • 跳出第三层圆括号,往右是参数列表,说明数组中包含的是函数指针,这些函数没有参数,返回值类型是double。

简言之,fp3是一个指向函数的指针,该函数无参数,且返回一个含有10个指向函数指针的数组的指针,这些函数不接受参数且返回double值。

这二行接着说明:a是fp3类型中的一个。

(4) int(*(*fp4())[10]) ();

这里fp4不是变量定义,而是一个函数声明。

  • 找到变量名fp4,往右是一个无参参数列表,说明fp4是一个函数,接着往左是*号,说明函数返回值是一个指针;
  • 跳出里层圆括号,往右是[]运算符,说明fp4的函数返回值是一个指向数组的指针,往左是*号,说明数组中包含的元素是指针;
  • 跳出外层圆括号,往右是一个无参参数列表,说明数组中包含的元素是函数指针,这些函数没有参数,返回值的类型是int。

简言之,fp4是一个返回指针的函数,该指针指向含有10个函数指针的数组,这些函数不接受参数且返回整型值。

用typedef简化复杂的声明和定义,以上我们已经看到了不少复杂的声明和定义,这里再举一个例子:

int *(*a[10]) (int, char*);

  • 用前面的“右左法则”,我们可以很快弄清楚:
  • a是一个包含10个函数指针的数组,这些函数的参数列表是(int, char*),返回值类型是int*。
  • 理解已经不成问题,这里的关键是如果要定义相同类型的变量b,都得重复书写:

int *(*b[10]) (int, char*);

这里有没有方便的办法避免这样没有价值的重复?答案就是用typedef来简化复杂的声明和定义。

typedef可以给现有的类型起个别名。这里用typedef给以上a、b的类型起个别名:

typedef int *(*A[10]) (int, char*); // 在之前定义的前面加入typedef,然后将变量名a替换成类型名A

现在要再定义相同类型的变量c,只需要:
A c;

再看一例:

void(*b[10]) (void(*)());

先替换右边括号里面的参数,将void(*)()的类型起个别名pParam:

Neural networks made easy

现在谈人工智能已经绕不开“神经网络”这个词了。人造神经网络粗线条地模拟人脑,使得计算机能够从数据中学习。

机器学习这一强大的分支结束了 AI 的寒冬,迎来了人工智能的新时代。简而言之,神经网络可能是今天最具有根本颠覆性的技术。

看完这篇神经网络的指南,你也可以和别人聊聊深度学习了。为此,我们将尽量不用数学公式,而是尽可能用打比方的方法,再加一些动画来说明。

强力思考

AI 的早期流派之一认为,如果您将尽可能多的信息加载到功能强大的计算机中,并尽可能多地提供方法来了解这些数据,那么计算机就应该能够“思考”。比如 IBM 著名的国际象棋 AI Deep Blue 背后就是这么一个思路:通过对棋子可能走出的每一步进行编程,再加上足够的算力,IBM 程序员创建了一台机器,理论上可以计算出每一个可能的动作和结果,以此来击败对手。

通过这种计算,机器依赖于工程师精心预编程的固定规则——如果发生了 A,那么就会发生 B ; 如果发生了 C,就做 D——这并不是如人类一样的灵活学习。当然,它是强大的超级计算,但不是“思考”本身。

教机器学习

在过去十年中,科学家已经复活了一个旧概念,不再依赖大型百科全书式记忆库,而是框架性地进行模拟人类思维,以简单而系统的方式分析输入数据。 这种技术被称为深度学习或神经网络,自20世纪40年代以来一直存在,但是由于今天数据的大量增长—— 图像、视频、语音搜索、浏览行为等等——以及运算能力提升而成本下降的处理器,终于开始显示其真正的威力。

mysql 已设置utf8mb4 还是存不了表情【解决方法】

1,emoji介绍

(1)emoji 就是表情符号,来自日语词汇“絵文字”(假名为“えもじ”,读音即 emoji)。
(2)最早由栗田穰崇(Shigetaka Kurita)创作,并在日本网络及手机用户中流行。 自苹果公司发布的 iOS 5 输入法中加入了 emoji 后,这种表情符号开始席卷全球。
(3)目前 emoji 已被大多数现代计算机系统所兼容的 Unicode 编码采纳,普遍应用于各种手机短信和社交网络中。
1535075603-7981-201610
2,问题描述

最近使用 MySQL 作为一个移动应用的数据库。但是不管使用 Anroid 设备,还是 iOS 设备。只要插入包含有 emoji 表情符号的记录时就报错。
1535075604-3223-201610

3,问题原因

MySQL 我使用的是默认的 utf8 编码,UTF8 编码只支持 1-3 个字节。而 emoji 占有 4 个字节的存储空间,所以自然保存不了。
从 MYSQL5.5 开始,可支持 4 个字节 UTF 编码,只要将编码标记成 utf8mb4 即可。并且 utf8mb4 是兼容 utf8 的。

csv文件上传中文编码乱码的解决方法

下面是上传文件的截图:

QQ截图20180814094435

1.文件是以GB2312作为编号,当上传至服务端后,编码依然是GB2312。所以一开始我尝试以GB2312编码进行转码,但是结果是失败的。

2.后来想到了写出文件的时候进行转码,成功把文件转成了UTF-8,但是会出现其他的bug,比如数字“1”会变成“1              ”。也就是多了很多空格,所以也失败了。

3.最后想到了,分割字符串,组装成对象那块,开始依然尝试使用GB2312、GBK、UTF-8依然失败,最后使用编码:ISO-8859-1 成功了。

下面是代码片段:

@Override
public Object readLineMap(String line) throws IllegalServiceException {
    if (line.contains(",")) {
        String xline = null;
        try {
            xline = new String(line.getBytes("ISO-8859-1"));
        } catch (UnsupportedEncodingException e) {
            e.printStackTrace();
        }

        logger(xline);
        String[] strings = xline.split(",");


        ...........................

Linux系统可能需要这样子:

xline = new String(line.getBytes("ISO-8859-1"),"GB2312");

一款性能监控好工具 – NewRelic

在读《高性能MySql》一书中,认识了NewRelic,但是还未能及时用上,所以在网上找了一个帖子以记录。

NewRelic是一家提供Rails性能监测服务的网站, NewRelic提供了不同级别的监测功能,免费的是Lite版本,最高有Gold版本.

New Relic工具有两种运行模式:

(1)Production 模式:当您的工程以生产模式运行时,您可以在rpm.newrelic.com 网站上实时对它进行监督。

(2)Developer模式:当您的工程以开发模式运行时,您可以在本地localhost:3000/newrelic网页上查看到性能分析数据。

 

New Relic工具安装步骤(默认Rails 3版本):

  1. gem install newrelic_rpm
  2. 在Gemfile文件中,添加gem ‘newrelic_rpm’语句

3.在当前工程下,bundle update

  1. 在newrelic.com/get-RPM.html注册Lite版本的账号,然后将从此网站下载到的newrelic.yml文件,复制到当前工程的config文件夹中。
  2. 在development模式下启动工程,访问工程,然后在http://localhost:3000/newrelic页面您会看到对当前工程的性能分析数据。

6.若在production模式下启动工程,则您访问http://localhost:3000/newrelic链接会失效,这时您可以通过https://rpm.newrelic.com/login进行登录,在NewRelic的网站上查看关于工程的性能分析数据。

1222324252631
 
Copyright © 2008-2021 lanxinbase.com Rights Reserved. | 粤ICP备14086738号-3 |